Site Tools


math:transforms

List of Integral / Space Transforms

Laplace Transforms

$$F(s) = \int_{-\infty}^{\infty}\,f(x)e^{st}\,dt$$

$f(t)$ $F(s)$
$$1$$ $$\frac{1}{s}$$
$$t^n\,,(n=0,1,2,...)$$ $$\frac{n!}{s^{n+1}}$$
$$t^nf(t)$$ $$(-1)\stackrel{n}{F}(s)$$
$$e^{at}$$ $$\frac{1}{s-a}$$
$$e^{at}f(t)$$ $$F(s-a)$$
$$te^{at}$$ $$\frac{1}{(s-a)^2}$$
$$t^ne^{at}$$ $$\frac{n!}{(s-a)^{n+1}}$$
$$\frac{e^{at}-e^{bt}}{a-b}$$ $$\frac{1}{(s-a)(s-b)}$$
$$\frac{ae^{at}-e^{bt}}{a-b}$$ $$\frac{s}{(s-a)(s-b)}$$
$$\sin(kt)$$ $$\frac{k}{s^2+k^2}$$
$$\cos(kt)$$ $$\frac{s}{s^2+k^2}$$
$$t\sin(kt)$$ $$\frac{2ks}{(s^2+k^2)^2}$$
$$t\cos(kt)$$ $$\frac{s^2-k^2}{(s^2+k^2)^2}$$
$$e^{at}\sin(kt)$$ $$\frac{k}{(s-a)^2-k^2}$$
$$e^{at}\cos(kt)$$ $$\frac{s-a}{(s-a)^2+k^2}$$
$$\frac{\sin{at}}{t}$$ $$\text{atan}\left(\frac{a}{s}\right)$$
$$\dot{f}(t)$$ $$sF(s) -f(0)$$
$$\int_0^t{\,f(t)\,dt}$$ $$\frac{1}{s}\,F(s)$$
$$f(t) * g(t)$$ $$F(s)G(s)$$
$$\delta(t)$$ $$1$$
$$\delta(t-t_0)$$ $$e^{-st_0}$$
$$u(t-a)$$ $$\frac{e^{-as}}{s}$$
$$u(t-a)f(t-a)$$ $$e^{a-s}F(s)$$

Z Transforms

$$F[z] = \sum_{n=-\infty}^{\infty}{f[n]z^{-n}}$$

  • Geometric Series:

$$\sum_{n=0}^{\infty}{a^n} = \frac{1}{1-a}$$

For most transforms, taking the inversion of the coefficients and arguments leads to the same transform, but the ROC is inverted. e.g.

$$\mathcal{Z}\{u[n]\}=\frac{z}{z-1}\quad ROC\,|z|>1$$ $$\mathcal{Z}\{-u[-n-1]\}=\frac{z}{z-1}\quad ROC\,|z|<1$$

$$f[n]$$ $$F[z]$$ $$ROC$$
$$x[n]$$ $$X[z]$$ $$r_2 < |z| < r_1$$
$$x[n-k]$$ $$z^{-k}X[z]$$ $$|z|\neq 0$$
$$x[n+k]$$ $$z^{k}X[z]$$ $$|z|\neq \infty$$
$$a^nx[n]$$ $$X\left[\frac{z}{a}\right]$$ $$|a|r_2<|z|<|a|r_1$$
$$\delta [n]$$ $$1$$ $$\text{All } z$$
$$u[n]$$ $$\frac{z}{z-1}=\frac{1}{1-z^{-1}}$$ $$|z| > 1$$
$$a^nu[n]$$ $$\frac{z}{z-a}=\frac{1}{1-az^{-1}}$$ $$|z| > |a|$$
$$nu[n]$$1) $$\frac{z}{(z-1)^2}=\frac{z^{-1}}{(1-z^{-1})^2}$$ $$|z| > 1$$
$$n^2u[n]$$ $$\frac{z(z+1)}{(z-1)^3}=\frac{1+z^{-1}}{z(1-z^{-1})^2}$$ $$|z| > 1$$
$$na^nu[n]$$ $$\frac{za}{(z-a)^2}=\frac{az^{-1}}{(1-az^{-1})^2}$$ $$|z| > |a|$$
$$\cos(\omega_0 n)u[n]$$ $$\frac{z(z-\cos(\omega_0))}{z^2-2z\cos(\omega_0)+1}=\frac{1-z^1\cos(\omega_0)}{1-2z^{-1}\cos(\omega_0)+z^{-2}}$$ $$|z| > 1$$
$$\sin(\omega_0 n)u[n]$$ $$\frac{z\sin(\omega_0)}{z^2-2z\cos(\omega_0)+1}=\frac{z^{-1}\sin(\omega_0)}{1-2z^{-1}\cos(\omega_0)+z^{-2}}$$ $$|z| > 1$$
$$a^n\cos(\omega_0 n)u[n]$$ $$\frac{z(z-a\cos(\omega_0))}{a^2-2az\cos(\omega_0)+1}=\frac{1-az^1\cos(\omega_0)}{1-2az^{-1}\cos(\omega_0)+a^2z^{-2}}$$ $$|z| > 1$$
$$a^n\sin(\omega_0 n)u[n]$$ $$\frac{az\sin(\omega_0)}{a^2-2az\cos(\omega_0)+z^2}=\frac{az^{-1}\sin(\omega_0)}{1-2az^{-1}\cos(\omega_0)+a^2z^{-2}}$$ $$|z| > 1$$
$$e^{at}$$ $$\frac{z}{z-e^{at}}$$ $$|z| > 1$$
1)
$ramp(t)$
math/transforms.txt · Last modified: by theorytoe