This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| math:transforms [2025-11-14 Fri 00:21] – ↷ Page moved and renamed from math to math:transforms theorytoe | math:transforms [2025-11-19 Wed 18:52] (current) – [Laplace Transforms] fix sign on e^at*cos(kt) transform theorytoe | ||
|---|---|---|---|
| Line 20: | Line 20: | ||
| | $$t\cos(kt)$$ | | $$t\cos(kt)$$ | ||
| | $$e^{at}\sin(kt)$$ | | $$e^{at}\sin(kt)$$ | ||
| - | | $$e^{at}\cos(kt)$$ | + | | $$e^{at}\cos(kt)$$ |
| | $$\frac{\sin{at}}{t}$$ | | $$\frac{\sin{at}}{t}$$ | ||
| | $$\dot{f}(t)$$ | | $$\dot{f}(t)$$ | ||
| Line 52: | Line 52: | ||
| | $$u[n]$$ | | $$u[n]$$ | ||
| | $$a^nu[n]$$ | | $$a^nu[n]$$ | ||
| - | | $$nu[n]$$ | + | | $$nu[n]$$(($ramp(t)$)) |
| | $$n^2u[n]$$ | | $$n^2u[n]$$ | ||
| | $$na^nu[n]$$ | | $$na^nu[n]$$ | ||
| Line 59: | Line 59: | ||
| | $$a^n\cos(\omega_0 n)u[n]$$ | $$\frac{z(z-a\cos(\omega_0))}{a^2-2az\cos(\omega_0)+1}=\frac{1-az^1\cos(\omega_0)}{1-2az^{-1}\cos(\omega_0)+a^2z^{-2}}$$ | $$|z| > 1$$ | | | $$a^n\cos(\omega_0 n)u[n]$$ | $$\frac{z(z-a\cos(\omega_0))}{a^2-2az\cos(\omega_0)+1}=\frac{1-az^1\cos(\omega_0)}{1-2az^{-1}\cos(\omega_0)+a^2z^{-2}}$$ | $$|z| > 1$$ | | ||
| | $$a^n\sin(\omega_0 n)u[n]$$ | $$\frac{az\sin(\omega_0)}{a^2-2az\cos(\omega_0)+z^2}=\frac{az^{-1}\sin(\omega_0)}{1-2az^{-1}\cos(\omega_0)+a^2z^{-2}}$$ | | $$a^n\sin(\omega_0 n)u[n]$$ | $$\frac{az\sin(\omega_0)}{a^2-2az\cos(\omega_0)+z^2}=\frac{az^{-1}\sin(\omega_0)}{1-2az^{-1}\cos(\omega_0)+a^2z^{-2}}$$ | ||
| - | | $$\text{ramp}[n]$$ | ||
| | $$e^{at}$$ | | $$e^{at}$$ | ||