This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| math:transforms [2025-11-14 Fri 00:21] – removed - external edit (Unknown date) 127.0.0.1 | math:transforms [2025-11-19 Wed 18:52] (current) – [Laplace Transforms] fix sign on e^at*cos(kt) transform theorytoe | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| + | ====== List of Integral / Space Transforms ====== | ||
| + | |||
| + | ===== Laplace Transforms ===== | ||
| + | |||
| + | $$F(s) = \int_{-\infty}^{\infty}\, | ||
| + | |||
| + | ^ $f(t)$ | ||
| + | | $$1$$ | $$\frac{1}{s}$$ | ||
| + | | $$t^n\,, | ||
| + | | $$t^nf(t)$$ | ||
| + | | $$e^{at}$$ | ||
| + | | $$e^{at}f(t)$$ | ||
| + | | $$te^{at}$$ | ||
| + | | $$t^ne^{at}$$ | ||
| + | | $$\frac{e^{at}-e^{bt}}{a-b}$$ | ||
| + | | $$\frac{ae^{at}-e^{bt}}{a-b}$$ | $$\frac{s}{(s-a)(s-b)}$$ | ||
| + | | $$\sin(kt)$$ | ||
| + | | $$\cos(kt)$$ | ||
| + | | $$t\sin(kt)$$ | ||
| + | | $$t\cos(kt)$$ | ||
| + | | $$e^{at}\sin(kt)$$ | ||
| + | | $$e^{at}\cos(kt)$$ | ||
| + | | $$\frac{\sin{at}}{t}$$ | ||
| + | | $$\dot{f}(t)$$ | ||
| + | | $$\int_0^t{\, | ||
| + | | $$f(t) * g(t)$$ | ||
| + | | $$\delta(t)$$ | ||
| + | | $$\delta(t-t_0)$$ | ||
| + | | $$u(t-a)$$ | ||
| + | | $$u(t-a)f(t-a)$$ | ||
| + | |||
| + | ===== Z Transforms ===== | ||
| + | |||
| + | $$F[z] = \sum_{n=-\infty}^{\infty}{f[n]z^{-n}}$$ | ||
| + | |||
| + | |||
| + | * Geometric Series: | ||
| + | $$\sum_{n=0}^{\infty}{a^n} = \frac{1}{1-a}$$ | ||
| + | |||
| + | For most transforms, taking the inversion of the coefficients and arguments leads to the same transform, but the ROC is inverted. e.g. | ||
| + | |||
| + | $$\mathcal{Z}\{u[n]\}=\frac{z}{z-1}\quad ROC\, | ||
| + | $$\mathcal{Z}\{-u[-n-1]\}=\frac{z}{z-1}\quad ROC\, | ||
| + | |||
| + | |||
| + | ^ $$f[n]$$ | ||
| + | | $$x[n]$$ | ||
| + | | $$x[n-k]$$ | ||
| + | | $$x[n+k]$$ | ||
| + | | $$a^nx[n]$$ | ||
| + | | $$\delta [n]$$ | $$1$$ | $$\text{All } z$$ | | ||
| + | | $$u[n]$$ | ||
| + | | $$a^nu[n]$$ | ||
| + | | $$nu[n]$$(($ramp(t)$)) | ||
| + | | $$n^2u[n]$$ | ||
| + | | $$na^nu[n]$$ | ||
| + | | $$\cos(\omega_0 n)u[n]$$ | ||
| + | | $$\sin(\omega_0 n)u[n]$$ | ||
| + | | $$a^n\cos(\omega_0 n)u[n]$$ | $$\frac{z(z-a\cos(\omega_0))}{a^2-2az\cos(\omega_0)+1}=\frac{1-az^1\cos(\omega_0)}{1-2az^{-1}\cos(\omega_0)+a^2z^{-2}}$$ | $$|z| > 1$$ | | ||
| + | | $$a^n\sin(\omega_0 n)u[n]$$ | $$\frac{az\sin(\omega_0)}{a^2-2az\cos(\omega_0)+z^2}=\frac{az^{-1}\sin(\omega_0)}{1-2az^{-1}\cos(\omega_0)+a^2z^{-2}}$$ | ||
| + | | $$e^{at}$$ | ||