====== Transform Tables ====== * [[math:transforms|List of Integral / Space Transforms]] * [[math:fourier|Fourier Analysis]] * [[math:units|Units and System Conversions]] ====== Useful Equations ====== ^ Eulers Formula | $$e^{j\varphi} = \cos(\varphi)+j\sin(\varphi)$$ | ^ Eulers Cosine | $$\cos(x) = \frac{e^{jx}}{2} + \frac{e^{-jx}}{2}$$ | ^ Eulers Sine | $$\sin(x) = \frac{je^{-jx}}{2} - \frac{je^{jx}}{2}$$ | ^ Angular Frequency | $$\omega = 2\pi f$$ | ^ Period | $$T = \frac{1}{f}$$ | ====== Common Integrals ====== | $$\int\,u\,dv = uv-\int\,v\,du$$ | | $$\int\,\frac{1}{ax+b}\,dx = \frac{1}{a}ln(ax+b)$$ | | $$\int\,\sin(x)\,dx = -\cos(x)$$ | | $$\int\,\cos(x)\,dx = \sin(x)$$ | | $$\int\,e^{ax}\,dx = \frac{1}{a}e^{ax}$$ | | $$\int\,xe^x\,dx = (x-1)e^x$$ | ====== Common Derivatives ====== | $$\frac{d}{dx}(f(x)g(x)) = f(x)\dot{g}(x) + \dot{f}(x)g(x)$$ | | $$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f(x)\dot{g}(x)-\dot{f}(x)g(x)}{(g(x))^2}$$ | | $$\frac{d}{dx}(\sin(x)) = \cos(x) $$ | | $$\frac{d}{dx}(\cos(x)) = -\sin(x) $$ | | $$\frac{d}{dx}(\tan(x)) = \sec^2(x) $$ | | $$\frac{d}{dx}(\sin^{-1}(x)) = \frac{1}{\sqrt{1-x^2}}$$ | | $$\frac{d}{dx}(\cos^{-1}(x)) = \frac{-1}{\sqrt{1-x^2}}$$ | | $$\frac{d}{dx}(\tan^{-1}(x)) = \frac{1}{1+x^2}$$ | | $$\frac{d}{dx}(a^x) = a^x\ln(a)$$ | | $$\frac{d}{dx}(\ln|x|) = \frac{1}{x}$$ | | $$\frac{d}{dx}(\log_a(x)) = \frac{1}{x\ln(a)}$$ |